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Abstract
The known (2+1)-dimensional breaking soliton equation, the coupled
KP equation with three potentials and a new (3+1)-dimensional nonlinear
evolution equation are decomposed into systems of solvable ordinary
differential equations with the help of the (1+1)-dimensional AKNS equations.
The Abel–Jacobi coordinates are introduced to straighten out the associated
flows, from which algebraic-geometrical solutions of the (2+1)-dimensional
breaking soliton equation, the coupled KP equation and the (3+1)-dimensional
evolution equation are explicitly given in terms of the Riemann theta functions.

PACS numbers: 02.30.Jr, 05.45.Yv

1. Introduction

The construction of explicit solutions for multidimensional soliton equations is an important
task. However, it is very difficult to solve them due to their multispatial dimensions and
nonlinearity. Usually one considers the multidimensional problems to be solved in such
a way as splitting into several lower-dimensional ones, which are more easily treated with
some available tools. The nonlinearization approach of Lax pairs [1–3] makes it possible to
decompose the (1+1)-dimensional soliton equations into the compatible ordinary differential
equations, which are the finite-dimensional completely integrable systems in the Liouville
sense [1–4]. The (2+1)-dimensional soliton equations could be decomposed in a similar
procedure from their Lax representation into the (1+1)-dimensional soliton systems [5–8], and
further into the compatible ordinary differential equations. This paves a way of solving the
(1+1)- and (2+1)-dimensional soliton equations.

Algebraic-geometrical solutions, called also quasi-periodic solutions, of soliton
equations are important, which can be used to find multisoliton solutions through the
degeneracy procedure [9]. Various methods have been developed to get algebraic-geometrical
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solutions of (1+1)-dimensional soliton equations, for instance, the algebraic-geometrical
approach (see, e.g., [10] and references therein), and others [11–20]. However, studies
of algebraic-geometrical solutions for (2+1)-dimensional soliton equations are very few.
Recently, algebraic-geometrical solutions of some (2+1)-dimensional soliton equations such as
the Kadometsev–Petviashvili (KP), the mKP, the special (2+1)-dimensional Toda lattice,
the (2+1)-dimensional Gardner equations have been successfully obtained resorting to the
nonlinearization of Lax pairs and finite-order expansion of the Lax matrix [21–24].

The aim of the present paper is to study the decomposition of three multidimensional
nonlinear evolution equations and the construction of their algebraic-geometrical solutions.
These nonlinear evolution equations are the (2+1)-dimensional breaking soliton equation
[25, 26]

q̂t = q̂xy − 2q̂∂−1
x (q̂r̂)y r̂t = −r̂xy + 2r̂∂−1

x (q̂r̂)y (1.1)

the coupled KP equation with three potentials [28–30]

qt = 1
4

(
qxxx − 6qqx + 3∂−1

x qyy + 6(pr)x
)

pt = 1
2

(−pxxx + 3qpx − 3pxy + 3p∂−1
x qy

)
(1.2)

rt = 1
2

(−rxxx + 3qrx + 3rxy − 3r∂−1
x qy

)
and a new (3+1)-dimensional nonlinear evolution equation

3wxz − (2wt + wxxx − 2wwx)y + 2
(
wx∂

−1
x wy

)
x

= 0 (1.3)

where ∂−1
x stands for an inverse operator of ∂x = ∂/∂x with the condition ∂x∂

−1
x = ∂−1

x ∂x = 1,

which can be defined as
(
∂−1
x f

)
(x) = ∫ x

−∞ f (x ′) dx ′ under the decaying condition at infinity.
Equation (1.1) was studied in a series of papers [25–27] and was used to describe the (2+1)-
dimensional interaction of a Riemann wave propagating along the y-axis with a long wave
along the x-axis. This equation can be solved via the inverse scattering method. It has been
shown that equation (1.1) possesses the Hamiltonian structure and infinitely many symmetries.
And these symmetries usually constitute some infinite-dimensional Lie algebras (see, e.g., [27]
and references therein). For the coupled KP equation (1.2), the N-soliton solution, the bilinear
form and other systematic results were obtained in [28–30].

In this paper, based on the known (1+1)-dimensional AKNS equations it is shown
that solutions of the (2+1)-dimensional breaking soliton equation (1.1), the coupled KP
equation (1.2) and the (3+1)-dimensional nonlinear evolution equation (1.3) are reduced
to solvable ordinary differential equations, from which algebraic-geometrical solutions of
the (2+1)-dimensional breaking soliton equation (1.1), the coupled KP equations (1.2) and
the (3+1)-dimensional nonlinear evolution equation (1.3) are obtained. The present paper
is organized as follows. In section 2, we shall decompose the (2+1)-dimensional breaking
soliton equation (1.1), the coupled KP equation (1.2) and the (3+1)-dimensional nonlinear
evolution equation (1.3) into the first two or three members of the AKNS hierarchy in a
direct way and the nonlinearization of a Lax pair. Here a Lax pair of the KP equation (1.2)
is proposed. In section 3, with the help of solutions for the (1+1)-dimensional stationary
AKNS equations, we introduce the elliptic coordinates, by which solutions of the AKNS
hierarchy, the (2+1)-dimensional breaking soliton equation (1.1), the coupled KP equation (1.2)
and the (3+1)-dimensional evolution equations (1.3) are reduced to solving systems of solvable
ordinary differential equations. In section 4, a hyperelliptic Riemann surface of genus N
and Abel–Jacobi coordinates are defined to straighten out the associated flows. The Jacobi
inversion problem is discussed, from which algebraic-geometrical solutions of the (2+1)-
dimensional breaking soliton equation (1.1), the coupled KP equation (1.2) and the (3+1)-
dimensional nonlinear evolution equation (1.3) are expressed explicitly in terms of the Riemann
theta functions.
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2. Decomposition of multidimensional evolution equations

In this section, we first decompose the (2+1)-dimensional breaking soliton equation (1.1), the
coupled KP equation (1.2) and the (3+1)-dimensional nonlinear evolution equation (1.3) into
the (1+1)-dimensional AKNS equations. To this end, we consider the first three members of
the AKNS hierarchy [16, 17, 31]:

uy = −uxx + 2u2v vy = vxx − 2uv2 (2.1)

ut = uxxx − 6uvux vt = vxxx − 6uvvx (2.2)

and

uz = −uxxxx + 8uvuxx + 6u2
xv + 4uuxvx + 2u2vxx − 6u3v2

vz = vxxxx − 8uvvxx − 6uv2
x − 4vuxvx − 2v2uxx + 6u2v3.

(2.3)

It is a well-known fact that equations (2.1)–(2.3) are compatible since the flows determined
by them commute.

Proposition 2.1. Let (u, v) be a compatible solution of equations (2.1) and (2.2). Then the
functions q and r determined by

q̂(x, y, t) = v r̂(x, y, t) = u (2.4)

solve the (2+1)-dimensional breaking soliton equation (1.1).

Proof. With the aid of (2.1), we have

uvx − vux = ∂−1
x (q̂r̂)y . (2.5)

Substituting (2.1), that is uxx = −uy + 2u2v and vxx = vy + 2uv2, into (2.2) and noting (2.5)
yield (1.1). �

Proposition 2.2. The coupled KP equation (1.2) has a Lax pair, which is the spectral problem

φy = Uφ φ =
(

u

v

)
U =

(
−∂2

x + q + λ p

−r ∂2
x − q + λ

)
(2.6)

and the auxiliary problem

φt = V φ V = 1

4

(
4∂3

x − 6q∂x − 3qx + ς −6px

−6rx 4∂3
x − 6q∂x − 3qx − ς

)
(2.7)

where q, p and r are three scalar potentials, λ a constant spectral parameter, ς = 3∂−1
x qy.

Proof. A direct calculation shows that the compatibility condition of (2.6) and (2.7) yields the
Lax equation Ut − Vy + [U,V ] = 0, which is equivalent to the coupled KP equation (1.2).

As λ = 0, equations (2.6) and (2.7) can read

uy = −uxx + qu + pv vy = vxx − qv − ru (2.8)

and

ut = uxxx − 3
2qux − 3

4qxu + 1
4ςu − 3

2pxv

vt = vxxx − 3
2qvx − 3

4qxv − 1
4ςv − 3

2 rxu.
(2.9)

Now we impose the constraint between the potentials and eigenfunctions

q = 4uv p = −2u2 r = −2v2 (2.10)
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which together with (2.8) implies

ς = 3∂−1
x qy = 12(uvx − uxv). (2.11)

Substituting (2.10) and (2.11) into (2.8) and (2.9) yields (2.1) and (2.2). Therefore, we obtain
the following fact, which can be verified by direct calculations. �

Proposition 2.3. Let (u, v) be a compatible solution of equations (2.1) and (2.2). Then the
function (q, p, r) determined by (2.10) is a solution of the coupled KP equation (1.2).

Proposition 2.4. Let (u, v) be a compatible solution of equations (2.1)–(2.3). Then the
function w determined by

w(x, y, t, z) = 3uv (2.12)

solves the (3+1)-dimensional nonlinear evolution equation (1.3).

Proof. Using (2.1)–(2.3), a direct calculation arrives at

wy = 3(uvxx − uxxv) ∂−1
x wy = 3(uvx − uxv)

wxxxy = 3(uvxxxx − uxxxxv)x + 6(uxvxxx − uxxxvx)x

wt = 3(uxxxv + uvxxx) − 2wwx wx∂
−1
x wy = 9

(
u2v2

x − u2
xv

2) (2.13)

wty = 3(uvxxxx − uxxxxv)x + 3(uxxxvx − uxvxxx)x − 2
(
w∂−1

x wy

)
xx

wzx = 3(uvxxxx − uxxxxv)x − 2
(
wwy + wx∂

−1
x wy

)
x

which give the (3+1)-dimensional evolution equation (1.3). �

3. Decomposition of the AKNS hierarchy

In what follows, we shall construct the AKNS hierarchy, which plays the role of a bridge in the
process of reducing the (3+1)-dimensional evolution equation (1.1) and the (2+1)-dimensional
coupled KP equations (1.2) to solvable ordinary differential equations . Let us consider the
Lenard gradient sequence sj ,−1 � j ∈ Z by the recursion relation

s
(1)

l+1 = ∂xs
(1)
l − 2vs

(3)
l

s
(2)
l+1 = −∂xs

(2)
l − 2us

(3)
l (3.1)

s
(3)

l+1 =
l∑

j=0

(
s
(1)

j s
(2)

l−j + s
(3)

j s
(3)

l−j

)
l � −1

with s−1 = (
0, 0,− 1

2

)T
. It is easy to see that sj is uniquely determined by (3.1) and the first

few members are

s0 =

v

u

0


 s1 =


 vx

−ux

uv




s2 =

vxx − 2uv2

uxx − 2u2v

uvx − uxv


 s3 =


 vxxx − 6uvvx

−uxxx + 6uvux

uxxv + uvxx − uxvx − 3u2v2




s4 =

vxxxx − 8uvvxx − 6uv2

x − 4vuxvx − 2v2uxx + 6u2v3

uxxxx − 8uvuxx − 6u2
xv − 4uuxvx − 2u2vxx + 6u3v2

uvxxx − uxxxv + uxxvx − uxvxx + 6uuxv
2 − 6u2vvx


 .
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From (3.1), we have

∂xs
(3)

l+1 =
l∑

j=0

(
s
(1)

jx s
(2)

l−j + s
(1)

j s
(2)

l−j,x + ∂x

(
s
(3)

j s
(3)

l−j

))

=
l∑

j=0

(
s
(1)
j+1s

(2)
l−j − s

(1)
j s

(2)
l+1−j + 2vs

(3)
j s

(2)
l−j − 2us

(1)
j s

(3)
l−j + ∂x

(
s
(3)
j s

(3)
l−j

))

= us
(1)

l+1 − vs
(2)

l+1 + 2
l∑

j=0

s
(3)

l−j

(
vs

(2)

j − us
(1)

j + ∂xs
(3)

j

)
(3.2)

which implies by induction that

−us
(1)

l + vs
(2)

l + ∂xs
(3)

l = 0 l � −1. (3.3)

Equations (3.1) and (3.3) can be written as the Lenard equation

Ksl−1 = J sl J s−1 = 0 l � 0 (3.4)

with two operators

K =

 0 ∂x 2u

∂x 0 −2v

−u v ∂x


 J =


 0 −1 0

1 0 0
−u v ∂x


 .

Consider the AKNS the spectral problem and the auxiliary problem

ϕx = Uϕ U =
(

− 1
2λ u

v 1
2λ

)
(3.5)

ϕtm = V (m)ϕ V (m) =
(

V
(m)

11 V
(m)

12

V
(m)

21 −V
(m)

11

)
(3.6)

where

V
(m)
11 =

m∑
j=0

s
(3)
j−1λ

m−j V
(m)

12 =
m∑

j=1

s
(2)
j−1λ

m−j V
(m)

21 =
m∑

j=1

s
(1)
j−1λ

m−j .

Then the compatibility condition of (3.5) and (3.6) is the Lax equation, Utm − V (m)
x +

[U,V (m)] = 0, which is equivalent to the AKNS hierarchy(
utm, vtm

)T = Xm m � 0 (3.7)

where the AKNS vector field

Xj = σ ŝj σ =
(

0 −1

1 0

)
ŝj =

(
s
(1)

j

s
(2)
j

)
.

The first three nontrivial members in the hierarchy (3.7) are exactly equations (2.1)–(2.3) with
t2 = y, t3 = t, t4 = z.

Assume that (3.5) and (3.6) have two basic solutions ψ = (ψ1, ψ2)
T and φ = (φ1, φ2)

T .
We introduce a Lax matrix W of three functions f, g, h by

W = 1

2
(φψT + ψφT )σ =

(
f g

h −f

)
(3.8)
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which satisfies the Lax equations

Wx = [U,W ] Wtm = [V (m),W ]. (3.9)

This means that the function det W is a constant independent of x and tm. Equations (3.10)
can be written as

fx = uh − vg gx = −λg − 2uf hx = 2vf + λh (3.10)

and

ftm = hV
(m)

12 − gV
(m)

21 gtm = 2gV
(m)

11 − 2fV
(m)

12 htm = 2fV
(m)

21 − 2hV
(m)

11 . (3.11)

Now suppose that the functions f, g and h are finite-order polynomials in λ:

f =
N+1∑
j=0

fj−1λ
N+1−j g =

N+1∑
j=0

gj−1λ
N+1−j h =

N+1∑
j=0

hj−1λ
N+1−j . (3.12)

From (3.10) and (3.12), we have

KGj−1 = JGj JG−1 = 0 (3.13)

KGN = 0 Gj = (hj , gj , fj )
T . (3.14)

Equations (3.13) and (3.14) imply

−uhj + vgj + ∂xfj = 0 JGj = (∗, ∗, 0)T . (3.15)

Note that the equation JG−1 = 0 has the general solution

G−1 = α0s−1 (3.16)

with a constant of integration α0, which shows kerJ = {as−1|∀a}. Acting with the operator
(J −1K)k+1 upon G−1 in (3.14), we obtain from (3.13) and (3.4) that

Gk =
k+1∑
j=0

αj sk−j −1 � k � N (3.17)

where α1, . . . , αk+1 are constants of integration. Substituting (3.17) into (3.14) yields the
stationary AKNS equation

α0XN+1 + α1XN + · · · + αN+1X0 = 0. (3.18)

4. Solvable ordinary differential equations

In this section, we shall decompose the AKNS hierarchy into solvable ordinary differential
equations. Without any loss of generality we can set α0 = 1. Then from (3.17), we have

f−1 = − 1
2 f0 = − 1

2α1 f1 = s
(3)

1 − 1
2α2

g−1 = 0 g0 = s
(2)

0 h−1 = 0 h0 = s
(1)

0

(4.1)

fk = s
(3)
k + α1s

(3)
k−1 + · · · + αk−1s

(3)
1 − 1

2αk+1

gk = s
(2)
k + α1s

(2)
k−1 + · · · + αks

(2)
0

hk = s
(1)

k + α1s
(1)

k−1 + · · · + αks
(1)

0 k � 1.

(4.2)
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Equations (4.1) and (4.2) can be written as

s
(1)
k = γ0hk + γ1hk−1 + · · · + γkh0

s
(2)
k = γ0gk + γ1gk−1 + · · · + γkg0 k � 1

s
(3)

k = γ0fk + γ1fk−1 + · · · + γk−1f1 + πk

(4.3)

where
γ0 = 1 γ1 = −α1 γ2 = −α1γ1 − α2, . . .

γk = −α1γk−1 − α2γk−2 − · · · − αk−1γ1 − αk

π1 = 1
2α2 π2 = 1

2α3 − α1π1, . . .

πk+1 = 1
2αk+2 − α1πk − α2πk−1 − · · · − αkπ1.

(4.4)

Now we write g and h as finite products, which take the forms

g = u

N∏
i=1

(λ − µi) h = v

N∏
i=1

(λ − νi) (4.5)

to define the elliptic coordinates {µi} and {νi}. Noting (4.1), (4.2) and (3.12), we get by
comparing the coefficients of the same power for λ that

g1 = −u

N∑
j=1

µj h1 = −v

N∑
j=1

νj

g2 = u
∑
i<j

µiµj h2 = v
∑
i<j

νiνj

(4.6)

gl = (−1)lu
∑

j1<j2<···<jl

µj1µj2 · · · µjl

hl = (−1)lv
∑

j1<j2<···<jl

νj1νj2 · · · νjl
1 � l � N.

(4.7)

By using (4.6) and (4.2), we arrive at

∂x ln u = α1 +
N∑

j=1

µj ∂x ln v = −α1 −
N∑

j=1

νj (4.8)

2uv = 1

2


 N∑

j=1

µj




2

+
1

2

N∑
j=1

µ2
j + ∂x

N∑
j=1

µj + α1

N∑
j=1

µj + α2

2uv = 1

2


 N∑

j=1

νj




2

+
1

2

N∑
j=1

ν2
j − ∂x

N∑
j=1

νj + α1

N∑
j=1

νj + α2

(4.9)

with the help of equality

2
∑
i<j

ξiξj =

 N∑

j=1

ξj




2

−
N∑

j=1

ξ2
j

6
∑

i<j<k

ξiξj ξk =

 N∑

j=1

ξj




3

+ 2
N∑

j=1

ξ3
j − 3

N∑
j=1

ξj


 N∑

j=1

ξ2
j


 .

(4.10)
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From (4.3), equation (3.7) can be written as

utm = −γ0gm − γ1gm−1 − · · · − γmg0

vtm = γ0hm + γ1hm−1 + · · · + γmh0

(4.11)

where gl and hl are given by (4.6) and (4.7). Note that the function detW is a (2N + 2)th-order
polynomial in λ, whose coefficients are constants of the x-flow and tm-flow. We have

−det W = f 2 + gh = 1

4

2N+2∏
j=1

(λ − λj ) = 1

4
R(λ). (4.12)

Substituting (3.12) into the above expression and comparing the coefficients of λ2N+1,

λ2N, . . . , λN+1, we obtain

2f−1f0 = −1

4

2N+2∑
j=1

λj α1 = −1

2

2N+2∑
j=1

λj (4.13)

2f−1fl +
l−1∑
j=0

(fjfl−j−1 + gjhl−j−1) = 1

4
(−1)l+1

∑
j1<···<jl+1

λj1 · · · λjl+1 1 � l � N.

(4.14)

Using (4.2), it is easy to calculate that
l−1∑
j=0

gjhl−j−1 =
l−1∑
n=0

l−1−n∑
k=0

αkαl−n−1−k

n∑
i=0

s
(1)

i s
(2)

n−i (α0 = 1) (4.15)

l−1∑
j=0

fjfl−j−1 =
l−1∑
n=0

l−1−n∑
k=0

αkαl−n−1−k

n∑
i=0

s
(3)
i s

(3)
n−i −

l−1∑
j=0

j∑
k=0

αl−j αj−ks
(3)
k +

1

4

l−1∑
j=0

αj+1αl−j

(4.16)
l−1∑
j=0

j∑
k=0

αl−j αj−ks
(3)
k =

l−1∑
n=0

l−1−n∑
k=0

αkαl−n−1−ks
(3)

n+1 +
l∑

k=0

αkαl−ks
(3)

0 − α0

l∑
k=0

αl−ks
(3)
k . (4.17)

By utilizing (4.15)–(4.17), (3.1), (4.2) and (4.14), we have

αl+1 +
1

2

l∑
j=1

αjαl+1−j = (−1)l+1 1

2

∑
j1<···<jl+1

λj1 · · · λjl+1 1 � l � N (4.18)

from which αj (1 � l � N) can be explicitly represented by the constants λ1, . . . , λ2N+2.

Noting (4.5) and (3.10), we get

gx |λ=µk
= −uµkx

N∏
i=1,i �=k

(µk − µi) = −2uf |λ=µk

hx |λ=νk
= −vνkx

N∏
i=1,i �=k

(νk − νi) = 2vf |λ=νk
1 � k � N

(4.19)

which, together with (4.12), imply the evolution of the elliptic coordinates along the x-flow:
µkx√
R(µk)

= 1∏N
i=1,i �=k(µk − µi)

νkx√
R(νk)

= − 1∏N
i=1,i �=k(νk − νi)

1 � k � N. (4.20)



Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations 2297

We obtain from (3.6) and (4.3) that

V
(m)
12

∣∣
λ=µk

=
m∑

n=1

n−1∑
l=0

γn−l−1glµ
m−n
k

V
(m)

21

∣∣
λ=νk

=
m∑

n=1

n−1∑
l=0

γn−l−1hlν
m−n
k .

(4.21)

In a way similar to the calculation of (4.20), we arrive at the evolution of {µk} and {νk} along
the tm-flow:

µktm√
R(µk)

=
∑m

n=1

∑n−1
l=0 γn−l−1u

−1glµ
m−n
k∏N

i=1,i �=k(µk − µi)

νktm√
R(νk)

=
∑m

n=1

∑n−1
l=0 γn−l−1v

−1hlν
m−n
k∏N

i=1,i �=k(νk − νi)

1 � k � N 2 � m � N (4.22)

where gl and hl are given by (4.6) and (4.7).
Therefore, if the 2N + 2 distinct parameters λ1, . . . , λ2N+2 are given, and let µk and νk be

distinct solutions of ordinary differential equations (4.20) and (4.22), then (u, v) determined
by (4.8) and (4.11) is a solution of the AKNS equation (3.7). This means that the function
(q̂, r̂) by (2.4), the function (p, q, r) by (2.10) (2 � m � 3) and the function w by (2.12)
(2 � m � 4) are solutions of the (2+1)-dimensional breaking soliton equation (1.1), the
coupled KP equation (1.2) and the (3+1)-dimensional evolution equation (1.3), respectively.

5. Algebraic-geometrical solutions

Let us consider the Riemann surface 
 of the hyperelliptic curve ζ 2 = R(λ),R(λ) =∏2N+2
j=1 (λ − λj ), of genus N. On 
 there are two infinite points ∞1 and ∞2, which are

not branch points of 
. Equip 
 with the canonical basis of cycles: a1, . . . , aN ; b1, . . . , bN,

and the holomorphic differentials

ω̃l = λl−1dλ√
R(λ)

1 � l � N.

Then the period matrices A and B defined by

Aij =
∫

aj

ω̃i Bij =
∫

bj

ω̃i

are invertible [32, 33]. Let C = A−1, τ = A−1B. The matrix τ is symmetric (τij = τji) and
has positive definite imaginary part (Im τ > 0). Then the Riemann theta function of 
 is
defined as

θ(ξ |τ ) =
∑
z∈Z

N

exp(π
√−1〈τz, z〉 + 2π

√−1〈ξ, z〉) ξ = (ξ1, . . . , ξ)T ∈ C
N

where 〈., .〉 represents the inner-product, 〈ξ, ς〉 = ∑N
j=1 ξjςj . If we normalize ω̃l into the

new basis ωj

ωj =
N∑

l=1

Cjlω̃l 1 � j � N

then we have ∫
ai

ωj = δji

∫
bi

ωj = τji .
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Now we introduce the Abel map A(p)

A(p) =
∫ p

p0

ω A
(∑

nkpk

)
=

∑
nkA(pk)

and the Abel–Jacobi coordinates

ρ(1) = A
(

N∑
k=1

p(µk)

)
=

N∑
k=1

∫ p(µk)

p0

ω (5.1)

ρ(2) = A
(

N∑
k=1

p(νk)

)
=

N∑
k=1

∫ p(νk)

p0

ω (5.2)

where

p(µk) = (λ = µk, ζ =
√

R(µk)) p(νk) = (λ = νk, ζ =
√

R(νk)) ∈ 


and p0 is chosen as a base point on 
. The components of the Abel–Jacobi coordinates in
(5.1) and (5.2) read

ρ
(1)
j =

N∑
k=1

∫ p(µk)

p0

ωj =
N∑

k=1

N∑
l=1

Cjl

∫ µk

λ(p0)

λl−1 dλ√
R(λ)

1 � j � N (5.3)

ρ
(2)

j =
N∑

k=1

∫ p(νk)

p0

ωj =
N∑

k=1

N∑
l=1

Cjl

∫ νk

λ(p0)

λl−1 dλ√
R(λ)

1 � j � N (5.4)

where λ(p0) is the local coordinates of p0. From the first expression of (4.19), we get

∂xρ
(1)
j =

N∑
l=1

N∑
k=1

Cjl

µl−1
k µkx√
R(µk)

=
N∑

l=1

N∑
k=1

µl−1
k Cjl∏N

i �=k(µk − µi)

which implies

∂xρ
(1)

j = CjN = �
(0)

j 1 � j � N (5.5)

with the help of the following equality:
N∑

k=1

µl−1
k∏N

i �=k(µk − µi)
= δlN 1 � l � N. (5.6)

In a similar way to the calculation of [21], we obtain from (5.3), (5.4) and (4.21) that

∂tmρ
(1)

j = �
(m−1)

j ∂tmρ
(2)

j = −�
(m−1)

j 1 � j � N 2 � m � 4 (5.7)

with

�
(m−1)
j = Cj,N−m+1 + γ1Cj,N−m+2 + · · · + γm−1CjN . (5.8)

On the basis of these results, it is easy to see that ρ
(1)
j and ρ

(2)
j are linear functions:

ρ
(1)

j = �
(0)

j x +
m∑

k=2

�
(k−1)

j tk + γ
(1)

j 1 � j � N 2 � m � 4 (5.9)

ρ
(2)
j = −�

(0)
j x −

m∑
k=2

�
(k−1)
j tk − γ

(2)
j 1 � j � N 2 � m � 4 (5.10)

where γ
(i)
j (i = 1, 2) are constants,

γ
(1)
j =

N∑
k=1

∫ p(µk(0))

p0

ωj γ
(2)
j = −

N∑
k=1

∫ p(νk(0))

p0

ωj .
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Especially, for the (2+1)-dimensional breaking soliton equation (1.1) and the coupled KP
equation (1.2) we have

ρ
(1)
j = �

(0)
j x + �

(1)
j y + �

(2)
j t + γ

(1)
j

ρ
(2)
j = −�

(0)
j x − �

(1)
j y − �

(2)
j t − γ

(2)
j 1 � j � N.

(5.11)

Moreover, for the (3+1)-dimensional nonlinear evolution equation (1.3), we have

ρ
(1)

j = �
(0)

j x + �
(1)

j y + �
(2)

j t + �
(3)

j z + γ
(1)

j

ρ
(2)
j = −�

(0)
j x − �

(1)
j y − �

(2)
j t − �

(3)
j z − γ

(2)
j 1 � j � N.

(5.12)

According to the Riemann theorem [32, 33], there exists a constant vector M(l) ∈ C
N

such that the function

F (l)(λ) = θ(A(p(λ)) − ρ(l) − M(l)) l = 1, 2

has exactly N zeros at µ1, . . . , µN for l = 1 or ν1, . . . , νN for l = 2, and we have the inversion
formula:

N∑
j=1

µk
j = Ik(
) −

2∑
s=1

Res
λ=∞s

λk d ln F (1)(λ)

N∑
j=1

νk
j = Ik(
) −

2∑
s=1

Res
λ=∞s

λk d ln F (2)(λ)

(5.13)

where Ik is the constant independent of ρ(l)

Ik(
) =
N∑

j=1

∫
aj

λkωj .

In what follows, we shall compute the residues in (5.13) for k = 1, . . . , 4. Through tedious
calculations, we obtain

Res
λ=∞s

λ d ln F (l)(λ) = (−1)s−1
N∑

j=1

�
(0)

j Dj ln θ(l)
s 1 � l � 2 1 � s � 2

Res
λ=∞s

λ2 d ln F (l)(λ) = (−1)s−1
N∑

j=1

�
(1)
j Dj ln θ(l)

s +
N∑

j=1

N∑
k=1

�
(0)
j �

(0)
k Djk ln θ(l)

s

(5.14)

Res
λ=∞s

λ3 d ln F (l)(λ) = (−1)s−1
N∑

j=1

�
(2)
j Dj ln θ(l)

s +
3

2

N∑
j=1

N∑
k=1

�
(0)
j �

(1)
k Djk ln θ(l)

s

+
1

2
(−1)s−1

N∑
i=1

N∑
j=1

N∑
k=1

�
(0)
i �

(0)
j �

(0)
k Dijk ln θ(l)

s

Res
λ=∞s

λ4 d ln F (l)(λ) = (−1)s−1
N∑

j=1

�
(3)
k Djk ln θ(l)

s +
4

3

N∑
j=1

N∑
k=1

�
(0)
j �

(2)
k Djk ln θ(l)

s

+
1

2

N∑
j=1

N∑
k=1

�
(1)
j �

(1)
k Djk ln θ(l)

s + (−1)s−1
N∑

i=1

N∑
j=1

N∑
k=1

�
(0)
i �

(0)
j �

(1)
k Dijk ln θ(l)

s

+
1

6

N∑
i=1

N∑
j=1

N∑
k=1

N∑
n=1

�
(0)
i �

(0)
j �

(0)
k �(0)

n Dijkn ln θ(l)
s (5.15)
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with

θ(1)
s = θ

(
�(0)x +

m∑
k=2

�(k−1)tk + ϒ(s)

)
θ(2)
s = θ

(
�(0)x +

m∑
k=2

�(k−1)tk + �(s)

)

where Dj signifies a derivative with respect to the jth argument of the theta function, Dij =
DiDj ,Dijk = DiDjDk,Dijkn = DiDjDkDn, and

�(i) = (
�

(i)

1 , . . . , �
(i)

N

)T
ϒ(s) = (

ϒ
(s)

1 , . . . , ϒ
(s)

N

)T
�(s) = (

�
(s)

1 , . . . ,�
(s)

N

)T

ϒ
(s)
j = γ

(1)
j + M

(1)
j +

∫ p0

∞s

ωj �
(s)
j = γ

(2)
j − M

(2)
j −

∫ p0

∞s

ωj

0 � i � m − 1 1 � j � N.

Here we use the property that the theta function is an even one. Equations (5.13)–(5.15) imply
the equalities

N∑
j=1

µj = I1(
) + ∂x ln
θ

(1)

2

θ
(1)
1

N∑
j=1

νj = I1(
) + ∂x ln
θ

(2)

2

θ
(2)
1

(5.16)

N∑
j=1

µ2
j = I2(
) + ∂t2 ln

θ
(1)

2

θ
(1)
1

− ∂2
x ln θ

(1)
1 θ

(1)
2

N∑
j=1

ν2
j = I2(
) + ∂t2 ln

θ
(2)

2

θ
(2)

1

− ∂2
x ln θ

(2)

1 θ
(2)

2

(5.17)

N∑
j=1

µ3
j = I3(
) +

(
∂t3 +

1

2
∂3
x

)
ln

θ
(1)

2

θ
(1)
1

− 3

2
∂x∂t2 ln θ

(1)

1 θ
(1)

2

N∑
j=1

ν3
j = I3(
) +

(
∂t3 +

1

2
∂3
x

)
ln

θ
(2)
2

θ
(2)

1

− 3

2
∂x∂t2 ln θ

(2)

1 θ
(2)

2 .

(5.18)

Using (4.6), (4.7), (5.16)–(5.18), and noting (4.10), the first expressions of (4.8) and (4.11)
can be written as

∂x ln u = N1 + ∂x ln
θ

(1)

2

θ
(1)

1

∂tm ln u = Nm + ∂tm ln
θ

(1)

2

θ
(1)

1

(5.19)

where N1, N2 and N3 are given by

N1 = I1 − γ1

N2 = −1

2

(
∂t2 + ∂2

x

)
ln

θ
(1)
2

θ
(1)

1

− ∂2
x ln θ

(1)
1 − 1

2

(
I1 + ∂x ln

θ
(1)
2

θ
(1)

1

)2

+ γ1

(
I1 + ∂x ln

θ
(1)
2

θ
(1)

1

)
+

1

2
I2 − γ2

N3 = −2

3

(
∂t3 − 1

4
∂3
x +

3

4
∂x∂t2

)
ln

θ
(1)
2

θ
(1)

1

− ∂x∂t2 ln θ
(1)

1 + γ2

(
I1 + ∂x ln

θ
(1)
2

θ
(1)

1

)
(5.20)

− 1

2

(
N1 + ∂x ln

θ
(1)

2

θ
(1)
1

)[
I2 +

(
∂t2 − ∂2

x

)
ln

θ
(1)

2

θ
(1)
1

− 2∂2
x ln θ

(1)

1

]

+
1

6

(
I1 + ∂x ln

θ
(1)

2

θ
(1)
1

)2 (
I1 − 3γ1 + ∂x ln

θ
(1)

2

θ
(1)
1

)
+

1

3
I3 − γ3.
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Proposition 5.1.
1
2N2 = −uv − ∂2

x ln θ
(1)

1 + 1
2

(
γ 2

1 − 2γ2 + I2
)

(5.21)

1
3N3 = uxv − uvx − ∂x∂t2 ln θ

(1)

1 + γ1γ2 − γ3 + 1
3

(
I3 − γ 3

1

)
. (5.22)

Noting (5.19)–(5.22), it is easy to see that Nmx = 0, N1tm = 0, N2t2 = 0. Through lengthy
calculations, we arrive at the following equalities:(
8∂x∂t3 + 3∂2

t2

)
ln θ

(1)
1 = −11(uxxv + uvxx) + 14uxvx + 30u2v2 − 3N4

+ 6γ 2
2 + 12γ1γ3 − 12γ 2

1 γ2 + 12γ4 + 3γ 4
1 + 3I4 (5.23)

(
3∂x∂t4 + 2∂t2∂t3

)
ln θ

(1)

1 = 5(uxxxv − uvxxx) − 7(uxxvx − uxvxx)

− 30(uuxv
2 − u2vvx) − 6

5N5 + const. (5.24)

Using (5.21)–(5.24), we have that N2t3 = 0, N3t2 = 0. Similarly, through tedious calculations
we can prove that N2t4 = 0, N3t3 = 0.

Proposition 5.2. N1 and N2 are constants independent of x, t2, t3, t4. And N3 is a constant
independent of x, t2, t3.

In a way similar to the calculations of (5.19), we have

∂x ln v = −N1 − ∂x ln
θ

(2)
2

θ
(2)

1

∂t2 ln v = −N̂2 − ∂t2 ln
θ

(2)
2

θ
(2)

1

∂t3 ln v = −N̂3 − ∂t3 ln
θ

(2)
2

θ
(2)

1

(5.25)

where N̂2 is a constant independent of x, t2, t3, t4 and N̂3 is a constant independent of x, t2, t3:

N̂2 = −1

2

(
∂t2 + ∂2

x

)
ln

θ
(2)

2

θ
(2)
1

− ∂2
x ln θ

(2)

1 − 1

2

(
I1 + ∂x ln

θ
(2)

2

θ
(2)
1

)2

+ γ1

(
I1 + ∂x ln

θ
(2)

2

θ
(2)
1

)
+

1

2
I2 − γ2

N̂3 = −2

3

(
∂t3 − 1

4
∂3
x +

3

4
∂x∂t2

)
ln

θ
(2)

2

θ
(2)
1

− ∂x∂t2 ln θ
(2)
1 + γ2

(
I1 + ∂x ln

θ
(2)

2

θ
(2)
1

)
(5.26)

− 1

2

(
N1 + ∂x ln

θ
(2)

2

θ
(2)
1

)[
I2 +

(
∂t2 − ∂2

x

)
ln

θ
(2)

2

θ
(2)
1

− 2∂2
x ln θ

(2)

1

]

+
1

6

(
I1 + ∂x ln

θ
(2)

2

θ
(2)
1

)2 (
I1 − 3γ1 + ∂x ln

θ
(2)

2

θ
(2)
1

)
+

1

3
I3 − γ3.

With the aid of (5.21), we arrive at

uv = −∂2
x ln θ

(1)
1 + 1

2

(
γ 2

1 − 2γ2 − N2 + I2
)
. (5.27)

Based on the above results and using (2.4), (2.10), (5.11), (5.19) and (5.27), we obtain the
assertion.

Theorem 5.3. The (2+1)-dimensional breaking soliton equation (1.1) and the coupled KP
equation (1.2) has algebraic-geometrical solutions, respectively,

q̂(x, y, t) = q̂(0, 0, 0) exp(−N1x − N̂2y − N̂3t)
θ(�(0)x + �(1)y + �(2)t + �(1))θ(�(2))

θ(�(0)x + �(1)y + �(2)t + �(2))θ(�(1))
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r̂(x, y, t) = r̂(0, 0, 0) exp(N1x + N2y + N3t)
θ(�(0)x + �(1)y + �(2)t + ϒ(2))θ(ϒ(1))

θ(�(0)x + �(1)y + �(2)t + ϒ(1))θ(ϒ(2))

(5.28)

and

q(x, y, t)=−4∂2
x ln θ(�(0)x + �(1)y + �(2)t + ϒ(1)) + a0

p(x, y, t)=p(0, 0, 0) exp(2N1x + 2N2y + 2N3t)
θ2(�(0)x + �(1)y + �(2)t + ϒ(2))θ2(ϒ(1))

θ2(�(0)x + �(1)y + �(2)t + ϒ(1))θ2(ϒ(2))

r(x, y, t)=r(0, 0, 0) exp(−2N1x − 2N̂2y − 2N̂3t)
θ2(�(0)x + �(1)y + �(2)t + �(1))θ2(�(2))

θ2(�(0)x + �(1)y + �(2)t + �(2))θ2(�(1))

(5.29)

where a0 = 2
(
γ 2

1 − 2γ2 − N2 + I2
)

is a constant. And the first expression of (5.29) is also an
algebraic-geometrical solution of the KP equation [10, 21]

qt = 1
4

(
qxxx − 3qqx + 3∂−1

x qyy

)
.

Therefore, noting (2.12), (5.12) and (5.27), we have the following fact.

Theorem 5.4. The (3+1)-dimensional nonlinear evolution equation (1.3) has algebraic-
geometrical solutions

w(x, y, t, z) = −3∂2
x ln θ(�(0)x + �(1)y + �(2)t + �(3)z + ϒ(1)) + b0 (5.30)

where b0 = 3
2

(
γ 2

1 − 2γ2 − N2 + I2
)

is a constant.

6. Conclusions

In the foregoing sections we have derived algebraic-geometrical solutions of the (2+1)-
dimensional breaking soliton equation, the coupled KP equation with three potentials and
the (3+1)-dimensional evolution equation, which was not considered in the literature before.
Generally, it is very difficult for a given (2+1)-dimensional nonlinear evolution equation to
be decomposed into two (1+1)-dimensional soliton equations in the same hierarchy. Here
we split successfully the (2+1)-dimensional breaking soliton equation and the coupled KP
equation with three potentials into two (1+1)-dimensional AKNS equations with the help of
a direct way and the nonlinearization of a Lax pair. What is more significant is that this
suggests a new possible approach to decompose multidimensional evolution equations and to
construct their algebraic-geometrical solutions. A (3+1)-dimensional nonlinear evolution
equation is cited as an instance in illustration of our method. These multidimensional
equations are further decomposed into solvable ordinary differential equations by utilizing
(1+1)-dimensional AKNS equations. Based on the decomposition and the theory of algebraic
curve, the explicit solutions of these multidimensional flows are expressed simply in a way
of linear superposition by the introduced Abel–Jacobi coordinates. An inverse procedure is
discussed to transform the explicit solutions in the original coordinates, from which algebraic-
geometrical solutions of these multidimensional nonlinear evolution equations are given,
whose expressions are very brief.
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